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Conducting scientific inquiry accurately is an acquired art form. While no “scientific method” per se exists, 
scientists frequently conduct different types of experiments among which there is a certain amount of 
commonality. This chapter takes a broad rather than detailed approach to conducting a scientific 
experiment. There is no doubt that only a full course in the methods of scientific inquiry could even begin to 
scratch the surface of all the details required to conduct a scientific experiment in the most professional 
manner. This chapter should, however, provide the physics teacher candidate or high school physics 
teacher with sufficient information needed to conduct this form of inquiry at an age-appropriate level. 

 
 
 
 

Types of Scientific Experiments 
 
Observation 
Testing 
Application  

Generic Experimental Design 
 

While scientists will agree that there is no “scientific method” per se, there is basic agreement about what 
fundamental procedures can be followed for designing and conducting a physics experiment. For instance, consider 
the following steps: 

 
1. Identify the problem to be solved. 
2. Identify the system being studied. 
3. Identify and distinguish system variables. 
4. Identify the general procedure to be followed. 
5. Identify the model if possible. 
6. Choose the range for the variables. 
7. Collect and interpret data. 
8. Consider the overall precision of the experiment. 

 
These steps, if nothing more, make it clear that a number of important factors need to be considered even for 
generic experimental design. Let’s examine each of these factors in turn using a generic example. Refer to the 
following diagram as appropriate. 
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Step 1. Identify the problem to be solved. A physicist wants to experimentally determine the relationships 
associated with image formation in a pinhole camera (see the image above). The physicist seeks to find all the 
relationships between the height of an object, ho, the height of its image, hi, the distance of the object, do, and the 
distance of the image, di, as measured from the pinhole. 
 
Step 2. Identify the system being studied. Just how the physicists solves the problem will depend upon the system 
being studied. Clearly, this problem deals with pinhole projection, so the system will consist of a light bulb (the 
object), a pinhole in a screen, and a screen where the image will form. 
 
Step 3.Identify and distinguish system variables. Four of the system variables have already been clearly 
identified: hi, ho, di, and do. Are these the only system variables? No. There are other things that might vary in this 
experiment such as the size of the pinhole, the shape of the pinhole, the number of pinholes, the materials out of 
which the system is made, the kind of light bulb used, the nature of the material in which the pinhole is made and so 
on. Some variables are pertinent (e.g., hi, ho, di, and do), some are extraneous (e.g., probably the materials of which 
the system is made, the kind of light bulb used, the nature of the material in which the pinhole is made). There are 
other variables that are pertinent and must be controlled (e.g., the shape, size, and number of the pinholes). Other 
variables will be allowed to change and will be identified as either dependent or independent variables. Controlled 
variables are often known as system parameters. 
 
Step 4. Identify the general procedure to be followed. Scientists conduct controlled experiments. In controlled 
experiments there will be only one independent and one dependent variable at any one time. Other variables are 
held constant and are considered during that phase of experimentation to be state variables. The reason we have 
only one independent and one dependent variable at a time is so that we can determine the unique relationship 
between these two variables. If two or more variables are allowed to change independent, there is no way of telling 
how much effect each of the independent variables has on the dependent variable. Clearly, in our experiment we 
need to allow four variables to change during different phases of the experiment, but this must be done in such a 
way that there is only one independent and one dependent variable at a time. The other pertinent variables will be 
held constant. To begin the experimental study, the physicist decides to see what how varying di affects hi. During 
this phase of the experiment do and ho are held constant. During additional phases of the experiment there will be 
other combinations of hi, ho, di, and do always with one independent, one dependent and two controlled variables. 
 
Step 5. Identify the model if possible. Some times a theoretical analysis of the system will point to expected 
outcomes. This analysis can help interpret the data. In our hypothetical experiment, the physicist relies upon 
knowledge of the straight-line propagation of light and geometry to predict the outcome of the experiment. The real 
problem then is to determine whether or not experimental evidence supports the theoretical model. Sometimes it is 
not possible to directly predict the relationship being studied using theoretical approach, and such pragmatic 
approaches as dimensional analysis may be used to at least get a general understanding of what to expect. 
 
Step 6. Choose the range for the variables. This is one of the most important considerations for a number of 
reasons. First, collecting only a small range of data it might be impossible to distinguish between, say, a linear 
model, and inverse model, and a power function model. Even a parabolic or hyperbolic function appear linear when 
a small portion of the curve is considered. Generally speaking, it is best to have as wide a range of data as possible. 
Determine the extrema, and then consider determining an appropriate number of points between the extrema at 
which to collect experimental data. Second, data collection is fraught with experimental error, and this error must 
be minimized to the greatest extent possible. Consider an absolute error (see Glossary of Terms) of 1mm. A 1mm 
absolute error isn’t much when one is considering the distance, say, between the floor and the ceiling in a room. 



The amount of relative error (see Glossary of Terms) is small. A 1mm absolute error is huge, for instance, if you are 
trying the measure the size of a tiny ball bearing. To increase the accuracy of an experiment it is important to 
reduce the amount of relative error in the data to a minimum. 
 
Step 7. Collect and interpret data. In introductory physics labs this step will generally take the form of graphical 
analysis (see Relationships from Graphs). Using the computer program Graphical Analysis, graph the independent 
variable against the dependent variable. Perform regression analysis (after linearizing the data if appropriate) and 
determine the form of the relationship. Pay careful attention to how well your fit matches your theoretical model. If 
your theory base is correct, then the only reason there should be a difference between the calculated model and the 
theoretical model is due to random error in the experiment. When you conduct your regression analysis, keep in 
mind that a 5th order polynomial will accurately fit almost any data. Fortunately, nature is much simpler that that. 
So, for instance, look for a trigonometric fit rather than a 5th order polynomial fit if you identify an unusual curve. 
Additionally, be certain that you create a physically reasonable regression model. That is, if the variable on the x-
axis is zero and you expect that the variable on the y-axis must similarly be zero, then the regression line must past 
through the origin (e.g., conduct regression analysis using a proportion fit, y = mx, instead of a linear fit, y = mx + 
b). Convert the algebraic expression into one that is physically interpreted. Replace y by the variable plotted on the 
y-axis, and x by the variable plotted on the x-axis. Determine the value and units of the slope and the y-intercept. 
Give these a physical interpretation if possible. 
 
Step 8. Consider the overall precision of the experiment. If your experimental results in no way match your 
theoretical model (if used), then there are two sources of possible error. Either your model is wrong, or you data 
collection procedures contain a systematic error (see Glossary of Terms). You might be asked to use methods 
dealing with the propagation of error to determine the amount of expected error in a calculated term on the basis of 
the errors in the experimental terms. 
 
Making Measurements 
 

Errors, Accuracy, and Precision 
 

In making physical measurements, one needs to keep in mind that measurements are not completely 
accurate.  Each measurement will have some number of significant figures and should also have some 
indication as to how much we can “trust” it (i.e. error bars).  Thus in order to reliably interpret experimental 
data, we need to have some idea as to the nature of the “errors” associated with the measurements.  There 
are whole text books devoted to error analysis.  We will not even attempt to be complete in our discussion of 
the topic, rather we will present some basic ideas to assist you in analyzing your data. 
 
When dealing with error analysis, it is a good idea to know what we really mean by error.  To begin with, let’s 
talk about what error is not.  Error is not a blunder such as forgetting to put the decimal point in right place, 
using the wrong units, transposing numbers, or any other silly mistake.  Error is not your lab partner 
breaking your equipment.  Error isn’t even the difference between your own measurement and some 
generally accepted value. (That is a discrepancy.)  Accepted values also have errors associated with them; 
they are just better measurements than you will be able to make in a three‐hour undergraduate physics lab.  
What we really mean by error has to do with uncertainty in measurements.  Not everyone in lab will come 
up with the same measurements that you do and yet (with some obvious exceptions due to blunders) we 
may not give preference to one person’s results over another’s.  Thus we need to classify types of errors. 
 
Generally speaking, there are two types of errors: 1) systematic errors and 2) random errors.  Systematic 
errors are errors that are constant and always of the same sign and thus may not be reduced by averaging 
over a lot of data.  Examples of systematic errors would be time measurements by a clock that runs too fast 
or slow, distance measurements by an inaccurately marked meter stick, current measurements by 
inaccurately calibrated ammeters, etc.  Generally speaking, systematic errors are hard to identify with a 
single experiment.  In cases where it is important, systematic errors may be isolated by performing 
experiments using different procedures and comparing results.  If the procedures are truly different, the 



systematic errors should also be different and hopefully easily identified.  An experiment that has very small 
systematic errors is said to have a high degree of accuracy. 
 
Random errors are a whole different bag. These errors are produced by any one of a number of 
unpredictable and unknown variations in the experiment.  Examples might include fluctuations in room 
temperature, fluctuations in line voltage, mechanical vibrations, cosmic rays, etc.  Experiments with very 
small random errors are said to have a high degree of precision. 
Since random errors produce variations both above and below some average value, we may generally 
quantify their significance using statistical techniques. 
 
Dealing with Uncertainties 
 

Uncertainty in Measurement  
 
When scientists collect data, they rarely make just one measurement and leave it at that. Random error and unanticipated 
events can cause a single data point to be somewhat non-representative. Thus, multiple measurements are usually taken, and 
the “best value” is represented using a variety of approaches. Mean, median, and mode are measurement of central 
tendency. The degree to which data tend to be distributed around the mean value is known as variation or dispersion. A 
variety of measures of dispersion or variation around a mean are available, each with its own peculiar idiosyncrasy. The 
most common measures are the following: range, mean deviation, standard deviation, semi-interquartile range, and 10-90 
percentile range. In this brief article we will examine only those measures most suitable for the purposes of an introductory 
lab experience.  
 
As a scientist or an engineer you need to know how to deal effectively with uncertainty in measurement. Uncertainty in 
measurement is not to be confused with significant digits that have their own rules of uncertainty (see Significant Figures in 
Measurement and Computation elsewhere in this Handbook).  
 
When one reads that some measurement has the value and absolute error of, say, d= 3.215m± .003m, how is this to be 
interpreted? The value 3.215m is known as the arithmetic mean (as opposed to weighted mean, geometric mean, harmonic 
mean, etc.) It is sometimes loosely called the average (but there are different types of averages as well). The arithmetic mean of 
N measurements is defined as follows: 
 

€ 

x =
1
N

xi
i=1

N

∑  

 
Unless the person who provides the information indicates what the absolute error represents, there is usually no way of 
knowing. Does the indicated error represent the range of the values measured? That is, does this merely indicate that the “true” 
value of d is somewhere between 3.212m and 3.218m? It could imply this, but other interpretations are also possible.  
 
In another case, ±0.003m could represent the mean deviation. The mean deviation is the mean of the absolute 
deviations of a set of data about the data’s mean. The mean deviation is defined mathematically as  
 

€ 

MD =
1
N

xi − x
i=1

N

∑  

 
where 

€ 

x  is the arithmetic mean of the distribution. 
 
In yet another case ±0.003m could represent one standard deviation. This would then represent a probability that there is a 
68% chance (±1σ or ±1standard deviation) that the “best” value is within the range of 3.212m and 3.218m. Such an 
interpretation is not strictly justified unless more than 30 data points have been used to calculate the mean value and standard 
deviation. In this interpretation data must also be “normally distributed” around the mean. That is, the mean, median, and 
mode of the data must be essentially the same. There must be a “bell shaped” distribution of data that are symmetrically 
distributed around the mean. Most data collected in introductory labs fail to meet these criteria. 
 
Whatever form of error representation you use in lab, you must be consistent in your expressions of uncertainty in 



measurement. You must also declare what your error represents. For the purposes of these introductory labs, the following 
forms of uncertainty in measurement will be used if called for.  
 
Example 1: Range – You use a meter stick with divisions marked off in 1mm units. The measurements of length appear to 
be somewhere between 93mm and 94mm. You would best represent the value of the length with uncertainty as follows 
stating without any ambiguity that the true value of the length measured lay somewhere between 93mm and 94mm.  
 

93.5mm ± 0.5mm 
 
Example 2: Mean Deviation – You make six observations using an electronic photogate timer to measure nearly identical 
falls of a ball with the following results:  
 

Observation 1: 6.556s 
Observation 2: 6.576s 
Observation 3: 6.630s 
Observation 4: 6.587s 
Observation 5: 6.575s 
Observation 6: 6.602s 

 
The value of the mean deviation is calculated thus: 
 

€ 

x= 6.588s 
|x1-

€ 

x |=0.022s 
|x2-

€ 

x |=0.012s 
|x3-

€ 

x |=0.042s 
|x4-

€ 

x |=0.001s 
|x5-

€ 

x |=0.013s 
|x6-

€ 

x |=0.014s 
Sum of deviations = 0.104s 

Mean deviation = 0.017s 
 

The mean of the data along with mean deviation are accurately stated as 6.588s ± 0.017s 
 
Example 3: Standard Deviation – Let’s say you have made 30 measurements using your electronic timer. For the purposes of 
these introductory labs we will use the mean ±1standard deviation (or ±1σ) to represent the error. This process makes three 
major assumptions – that the variation in the data comes only from random error, that 30 or so data points are sufficient to 
calculate a good standard deviation, and that data constitute a “normal” (bell-shaped distribution) around the mean. None of 
these assumptions might be correct in a particular situation, so it might be a good idea to examine the distribution of data to 
make certain that data have the standard symmetrical “bell shaped” curve. Thus, interpretation of the standard deviation must 
be done with great caution.  
 
Standard deviation of N data points can be readily calculated with the use of the following formula:  
 

€ 

σ =
1
N

(xi − x)
2

i=1

N

∑  

 
Most scientific calculators will, given the data points, readily calculate the standard deviation with ease. Lab students should 
use this form to express uncertainty in repeated measures throughout these introductory lab activities when called for. Due 
caution should be observed in the use of significant digits.  
 

Absolute and Relative Error 
 
Absolute and relative error are two types of error with which every experimental scientist should be familiar. The 
differences are important. 
 



Absolute Error: Absolute error is the amount of physical error in a measurement, period. Let’s say a meter stick is 
used to measure a given distance. The error is rather hastily made, but it is good to 

€ 

±1mm . This is the absolute 
error of the measurement. That is,  
 

absolute error = 

€ 

±1mm  (0.001m). 
 

In terms common to Error Propagation 
 

€ 

absolute error = Δx  
 
where x is any variable. 
 
Relative Error: Relative error gives an indication of how good a measurement is relative to the size of the thing 
being measured. Let’s say that two students measure two objects with a meter stick. One student measures the 
height of a room and gets a value of 3.215 meters 

€ 

±1mm  (0.001m). Another student measures the height of a small 
cylinder and measures 0.075 meters 

€ 

±1mm  (0.001m). Clearly, the overall accuracy of the ceiling height is much 
better than that of the 7.5 cm cylinder. The comparative accuracy of these measurements can be determined by 
looking at their relative errors. 
 

€ 

relative error =
absolute error

value of thing measured
 

 
or in terms common to Error Propagation 

 

€ 

relative error =
Δx
x

 

 
where x is any variable. Now, in our example, 
 

€ 

relative errorceiling height =
0.001m
3.125m

•100 = 0.0003%  

 

€ 

relative errorcylinder height =
0.001m
0.075m

•100 = 0.01% 

 
Clearly, the relative error in the ceiling height is considerably smaller than the relative error in the cylinder height 
even though the amount of absolute error is the same in each case. 
 

Propagation of Errors 
 
Let’s say that you have experimentally measured two quantities that will be used to determine a third quantity. 
There are errors in each of the measured quantities. How does the error in each of these two measured quantities 
affect the value of the calculated quantity? 
 
Assume for the sake of the discussion that we use a pendulum to indirectly measure the acceleration due to gravity 
according to the hypothetical relationship 
 

€ 

t = 2π l
g

 

 
The length of the pendulum, l, and the period of oscillation, t, are measured. In the process of determining the local 
value of g, there is an error in the measurement of the length of the pendulum Δl. Similarly, assume an error in the 



measured period equal to Δt. How do these errors in length and period affect the resulting value of g? Consider the 
following process of analyzing error propagation. Given the above relationship that has reformulated to eliminate 
the square root and terms in the denominator, start by substituting g + Δg for g, t + Δt for t, and l + Δl for l. 
 

€ 

gt 2 = 4π 2l 

€ 

(g+Δg)(t +Δt)2 = 4π 2(l +Δl)
(g+Δg)(t2 +2tΔt +Δt2) = 4π 2(l +Δl)

gt2 +2gtΔt + gΔt2 +Δgt2 +2tΔgΔt +ΔgΔt2 = 4π 2l + 4π 2Δl
 

 
Eliminating terms in double and triple Δ (assumed << 1) and canceling like terms (note also that 

€ 

gt 2 = 4π 2l) 
results in 

€ 

Δg =
4π 2Δl − 2gtΔt

t 2
 

 
Now, because the Δ terms can be considered either +/-, the maximum possible error in g will result when both error 
terms in the numerator are of like sign. That is, the maximum absolute error is given by the relationship 
 

€ 

Δgmax =
4π 2Δl + 2gtΔt

t 2
 

 
After rearranging our terms and making a substitution based on our original identity (

€ 

gt 2 = 4π 2l) we get the 
relative error 

 

€ 

Δg
g

 

 
 

 

 
 
max

=
Δl
l

+
2Δt
t

 

 
 
Additional pointers for making this process work well: 
 

1) Most of the time it is best to simplify a relationship before making the error term substitutions. Eliminating 
square roots and terms in the denominator will make the task of finding the error term much simpler. For 
instance, consider the following range equation with error terms in s, v, h, and g. Convert the equation 
before beginning the required substitutions: 

 

€ 

s = v × 2h
g

     becomes     

€ 

s2g = 2v 2h      then 

 

€ 

(s+Δs)2(g+Δg) = 2(v +Δv)2(h +Δh)  
 

2) Pay close attention to substitutions that can be made by manipulating the simplified original equation 
obtained from following the previous hint (e.g. 

€ 

2s = gt2). The reason for these substitutions is to eliminate 
“like” terms from both sides of the equation. This allows one to find terms that commonly appear in error 
propagation equations. In the example immediately above, this would mean the following: 

 

€ 

Δv
v

, 

€ 

Δs
s

, 

€ 

Δg
g

, and 

€ 

Δh
h

 

 
It should be noted that with knowledge of partial differential equations, equations for absolute and relative error can 
be much more easily derived (especially with complex equations). 



 
 
 

Percent Difference – Percent Error 
 
Sometimes scientists will want to compare their results with those of others, or with a theoretically derived 
prediction. Each of these types of comparisons call for a different type of analysis, percent difference and percent 
error respectively. 
 
Percent Difference: Applied when comparing two experimental quantities, E1 and E2, neither of which can be 
considered the “correct” value. The percent difference is the absolute value of the difference over the mean times 
100. 
 

€ 

% Difference =
E1 − E2

1
2
E1 + E2( )

•100  

 
Percent Error: Applied when comparing an experimental quantity, E, with a theoretical quantity, T, which is 
considered the “correct” value. The percent error is the absolute value of the difference divided by the “correct” 
value times 100. 
 

€ 

% Error =
T − E
T

•100 

 
 
 
 
 

Significant Figures 
 

In making physical measurements, one needs to keep in mind that measurements are not completely 
accurate.  Each measurement will have some number of significant figures and should also have some 
indication as to how much we can “trust” it (i.e. error bars).  Thus in order to reliably interpret experimental 
data, we need to have some idea as to the nature of the “errors” associated with the measurements.  There 
are whole text books devoted to error analysis.  We will not even attempt to be complete in our discussion of 
the topic, rather we will present some basic ideas to assist you in analyzing your data. 
 
Significant Figures 
 
The significant figures in a quantity are the meaningful digits in it.  There are several conventions listed 
below to keep in mind when dealing with significant figures: 
 
1) Any nonzero digit is a significant digit. Examples: 3.14 has three significant digits and 239.67 has five 

significant digits. 
2) Zeros in between nonzero values are significant digits.  Example 20.4 has three significant digits. 
3) Zeros to the left of the first nonzero digit are NOT significant. Example: 0.0012 has two significant digits. 
4) For numbers with decimal points, zeros to the right of nonzero digits are significant. Example: Both 2.0 

and 0.0020 have two significant digits. 
5) For numbers without decimal points, zeros to the right of nonzero digits may or may not be significant.  

Example: 350 may have two or three significant digits.  To avoid confusion, use a decimal point:  350. 
has three significant digits, 350 has two. 



6) The last significant digit in a number should have the same order of magnitude as the uncertainty.  
Examples: 3.1415±0.0001; 0.8±0.2 

7) The uncertainty should be rounded to one or two significant digits. 
8) When “doing” mathematical manipulations with numbers that have varying numbers of significant 

digits, the final result cannot have more significant digits than the least well known number.  In practice, 
we will keep all the numbers to their known accuracy through out the calculation and then round to the 
number of significant figures at the end. Examples: 2.0*3.14159 = 6.3; 25.001+32.0 = 55.0 

 
Conversion Factors 

 
The use of conversion factors will not be confusing so long as certain rules are adhered to rigidly. These rules can 
best be shown with the use of examples: 
 
Problem: Convert 3 (assumed an integer) inches (in) to millimeters (mm).  
 
The conversion factor is 1in = 25.4mm precisely. This can be rewritten in two ways: 
 

€ 

1in
25.4mm

=1    or 

€ 

25.4mm
1in

=1 

 
Now, we can multiply any quantity by 1 without changing its essential value. We can multiply 3 inches by 1 and 
still have 3 inches. If we choose to rewrite 1 in one of the above forms, we can convert a distance in one system of 
measure (British) to that of another (metric). The numerical value will not be the same because the unit of 
measurement will change. However, the actual distance will be the same in either system of measurement. The 
question is, which one of the above two ways should we choose to write 1 so as to successfully convert from one 
system of measurement to another?  
 
If we choose to write 1 in the first way, we have: 
 

€ 

3in = 3in ×1= 3in × 1in
25.4mm

=
0.118in2

mm
 

 
The result is in mixed units that have no direct physical meaning and is a combination of both metric and British 
systems. If we choose to write 1 in the second way, we have: 
 

€ 

3in = 3in ×1= 3in × 25.4mm
1in

= 76.2mm  

 
Note that the inches unit has canceled; the result is purely metric. 
 
What happens if one needs to convert, say, cubic centimeters (cm

3
) into cubic meters (m

3
)? Consider the following 

problem. 
 
Problem: Convert 300cm

3 into cubic meters. 
 
The conversion factor is 100cm = 1 meter. Now, one cannot merely multiply 300cm

3 by 1m/100cm to arrive at the 
answer. If this were done, the answer would come out in cm

2 x m and, again, mixed units. To handle this sort of 
complication, we must rewrite 1 as 1

3
. One cubed is the same as one. For example:  

 

€ 

300cm3 = 300cm3 ×13 = 300cm3 × ( 1m
100cm

)3  



 

€ 

= 300cm3 ×
1m3

1×106cm3 =
300m3

106
= 3×10−4m3 

 
When using conversion factors, always pay meticulous attention to the units and their associated powers. In doing 
so, you need never make an error in converting from one system to another. 
 

Dimensional Analysis 
 
Scientists sometimes will use a process called dimensional analysis to predict the form of the relationship between 
variables in a system. While this does NOT constitute a theory base, it does give scientists a better understanding of 
what to expect experimentally, and helps them to design scientific experiments. Carefully observe the following 
process of dimensional analysis for a cart accelerating down a fixed inclined plane.  
 
Let’s say that a scientist observes the motion of the cart on the fixed incline, and after conducting a few qualitative 
experiments concludes that the distance of the cart is a function of its acceleration and the time. Assume that the 
cart accelerates from rest when the stopwatch starts. What is the expected form of the relationship between 
distance, acceleration, and time? 
 
The form of this relationship can be predicted using an approach known as dimensional analysis. This process is 
based on the knowledge that the distance (d) is a function of the acceleration (a) and the time (t). That is, 
 

€ 

d = f (a,t) 
 

Now, if d (expressed in meters, m) is related to both a (expressed in meters per second squared, m/s2) and t 
(expressed in seconds, s) in some form, then the only thing missing is a proportionality constant and the powers of 
the variable terms. Write a proportionality applying power terms x and y to a and t respectively. Replace variables 
by units and solve for the power terms as, in this case, two simultaneous equations with two unknowns. Working 
backward, then find the form of the equation and insert proportionality constant. (Note that if the unit of time, s, is 
present on the right side of the equation, it must also be present on the left side of the equation. Place s0 on the left 
side of the equation in step two below as shown; s0 is equal to 1 and does not affect the equality.) 
 

€ 

d ∝ axty

replacing variables with units

m1s0 ∝
m
s2

 

 
 

 

 
 
x

sy

simplifying
m1s0 ∝mxsy−2x

equating exponents on m and s
1 = x
0 = y −2x
and solving simultaneous equations
y = 2x
hence, y = 2
thus, d ∝ a1t2

or, d = kat2

 

 



Experiments can be conducted or theoretical work performed to find the value of the constant, k. In reality, k equals 
½. This gives the familiar kinematic equation 
 

€ 

d =
1
2
at2 

 
Practices in the Laboratory 
 
Evaluating an Experiment 
 

Chi-Square Test for Goodness of Fit 
(after Applied Statistics by Hinkle/Wiersma/Jurs) 

 
Scientists will often use the Chi-square (

€ 

χ 2) test to determine the goodness of fit between theoretical 
and experimental data. In this test, we compare observed values with theoretical or expected values. 
Observed values are those that the researcher obtains empirically through direct observation; theoretical 
or expected values are developed on the basis of some hypothesis. For example, in 200 flips of a coin, one 
would expect 100 heads and 100 tails. But what if 92 heads and 108 tails are observed? Would we reject 
the hypothesis that the coin is fair? Or would we attribute the difference between observed and expected 
frequencies to random fluctuation? 

Consider another example. Suppose we hypothesize that we have an unbiased six-sided die. To test 
this hypothesis, we roll the die 300 times and observe the frequency of occurrence of each of the faces. 
Because we hypothesized that the die is unbiased, we expect that the number on each face will occur 50 
times. However, suppose we observe frequencies of occurrence as follows: 

 
Face value Occurrence 

1 42 
2 55 
3 38 
4 57 
5 64 
6 44 

 
Again, what would we conclude? Is the die biased, or do we attribute the difference to random 
fluctuation? 
Consider a third example. The president of a major university hypothesizes that at least 90 percent of the 
teaching and research faculty will favor a new university policy on consulting with private and public 
agencies within the state. Thus, for a random sample of 200 faculty members, the president would expect 
0.90 x 200 = 180 to favor the new policy and 0.10 x 200 = 20 to oppose it. Suppose, however, for this 
sample, 168 faculty members favor the new policy and 32 oppose it. Is the difference between observed 
and expected frequencies sufficient to reject the president's hypothesis that 90 percent would favor the 
policy? Or would the differences be attributed to chance fluctuation? 

Lastly, consider an experimental result where, for given independent values of “X,” the following 
theoretical (expected) and experimental (observed) dependent values of Y were found: 

 
 X Ytheoretical Yexperimental  
 3.45 11.90 11.37  
 4.12 16.97 17.02  
 4.73 22.37 23.78  



 5.23 27.35 26.13  
 6.01 36.12 35.96  
 6.82 46.51 45.22  
 7.26 52.71 53.10  

 
In each of these examples, the test statistic for comparing observed and expected frequencies is 

€ 

χ 2, 
defined as follows: 

€ 

χ 2 =
(O− E)2

Ei=1

k
∑  

where 
 

O = observed value 
E = expected value 

k = number of categories, groupings, or possible outcomes 
 
The calculations of 

€ 

χ 2for each of the three examples, using the above formula, are found in Tables 1-4. 
 
TABLE 1. Calculation of 

€ 

χ 2 for the Coin-Toss Example 
 

Face O E O-E (O-E)2 (O-E)2/E 
Heads 92 100 -8 64 .64 
Tails 108 100 +8 64 .64 

Totals 200 200 0 -- 1.28 = 

€ 

χ 2 
 
TABLE 2. Calculation of 

€ 

χ 2 for the Die Example 
 

Face Value O E O-E (O-E)2 (O-E)2/E 
1 42 50 -8 64 1.28 
2 55 50 5 25 .50 
3 38 50 -12 144 2.88 
4 57 50 7 49 .98 
5 64 50 14 196 3.92 
6 44 50 -6 36 .72 

Totals 300 300 0 -- 10.28=

€ 

χ 2  
 
TABLE 3. Calculation of 

€ 

χ 2 for the Consulting-Policy Example 
 

Disposition O E O-E (O-E)2 (O-E)2/E 
Favor 168 180 -12 144 .80 

Oppose 32 20 +12 144 7.20 
Totals 200 200 0 -- 8.00=

€ 

χ 2 

 
TABLE 4. Calculation of 

€ 

χ 2 for the Experiment Example 
 

X O E O-E (O-E)2 (O-E)2/E 
3.45 11.37 11.90 -.53 .28 .02 
4.12 17.02 16.97 .05 .02 .00 
4.73 23.78 22.37 1.41 1.99 .09 
5.23 26.13 27.35 -1.22 1.49 .05 
6.01 35.96 36.12 -.16 .03 .00 
6.82 45.22 46.51 -1.29 1.66 .04 
7.26 53.10 52.71 .39 .15 .00 

Totals 212.58 213.93 -1.35 5.62 0.20 = 

€ 

χ 2 
 



 
There is a family of 

€ 

χ 2 distributions, each a function of the degrees of freedom associated with the 
number of categories in the sample data. Only a single degree of freedom (df) value is required to identify 
the specific 

€ 

χ 2distribution. Notice that all values of 

€ 

χ 2are positive, ranging from zero to infinity. 
Consider the degrees of freedom for each of the above examples. In the coin example, note that the 

expected frequencies in each of the two categories (heads or tails) are not independent. To obtain the 
expected frequency of tails (100), we need only to subtract the expected frequency of heads (100) from 
the total frequency (200), or 200 - 100 = 100. Similarly, for the example of the new consulting policy, the 
expected number of faculty members who oppose it (20) can be found by subtracting the expected 
number who support it (180) from the total number in the sample (200), or 200 - 180 = 20. Thus, given 
the expected frequency in one of the categories, the expected frequency in the other is readily determined. 
In other words, only the expected frequency in one of the two categories is free to vary; that is, there is 
only 1 degree of freedom associated with these examples. 

For the die example, there are six possible categories of outcomes: the occurrence of the six faces. 
Under the assumption that the die is fair, we would expect that the frequency of occurrence of each of the 
six faces of the die would be 50. Note again that the expected frequencies in each of these categories are 
not independent. Once the expected frequency for five of the categories is known, the expected frequency 
of the sixth category is uniquely determined, since the total frequency equals 300. Thus, only the expected 
frequencies in five of the six categories are free to vary; there are only 5 degrees of freedom associated 
with this example. 

In the last example dealing with the data from the experiment, the cross-tabulation table has 2 
columns and 7 rows. The degrees of freedom for such tables is (# rows – 1)(# columns – 1) = (6)(1) = 6 
 
The Critical Values for the 

€ 

χ 2 Distribution 
The use of the 

€ 

χ 2 distribution in hypothesis testing is analogous to the use of the t and F distributions. 
A null hypothesis is stated, a test statistic is computed, the observed value of the test statistic is compared 
to the critical value, and a decision is made whether or not to reject the null hypothesis. For the coin 
example, the null hypothesis is that the frequency of heads is equal to the frequency of tails. For the die 
example, the null hypothesis is that the frequency of occurrence of each of the six faces is the same. In 
general, it is not a requirement for the categories to have equal expected frequencies. For instance, in the 
example of the new consulting policy, the null hypothesis is that 90 percent of the faculty will support the 
new policy and 10 percent will not. 

The critical values of 

€ 

χ 2 for 1 through 30 degrees of freedom are found in Table 5. Three different 
percentile points in each distribution are given – α = .10, α = .05, and α = .01. (e.g., chances of 10%, 5%, 
and 1% respectively of rejecting the null hypothesis when it should be retained). For the coin and 
consulting-policy examples, the critical values of 

€ 

χ 2 for 1 degree of freedom, with α = .05 and α = .01, 
are 3.841 and 6.635, respectively. For the die example, the corresponding critical values of 

€ 

χ 2 for 5 
degrees of freedom are 11.070 and 15.086. Although Table 5 is sufficient for many research settings in 
the sciences, there are some situations in which the degrees of freedom associated with a 

€ 

χ 2 test are 
greater than 30. These situations are not addressed here. 

Now that we have seen the table of critical values for the 

€ 

χ 2 distribution, we can complete the 
examples. For the coin example, the null hypothesis is that the frequency of heads equals the frequency of 
tails. As we mentioned, because there are only two categories, once the expected value of the first 
category is determined, the second is uniquely determined. Thus, there is only 1 degree of freedom 
associated with this example. Assuming that the α = .05 level of significance is used in testing this null 
hypothesis, the critical value of 

€ 

χ 2 (

€ 

χCV
2 ) is 3.841 (see Table 5). Notice that, in Table 1, the calculated 

value of 

€ 

χ 2 is 1.28. Because the calculated value does not exceed the critical value, the null hypothesis 
(the coin is fair) is not rejected; the differences between observed and expected frequencies are 



attributable to chance fluctuation. That is, when the calculated value of 

€ 

χ 2 exceeds the critical value, the 
data support the belief that a significant difference exists between expected and actual values. 

For the example of the new consulting policy, the null hypothesis is that 90 percent of the faculty 
would support it and 10 percent would not. Again, because there are only two categories, there is 1 degree 
of freedom associated with the test of this hypothesis. Thus, assuming α = .05, the 

€ 

χCV
2  is 3.841. From 

Table 3, we see that the calculated value of 

€ 

χ 2 is 8.00; therefore, the null hypothesis (that there is no 
difference) is rejected. The conclusion is that the percentage of faculty supporting the new consulting 
policy is not 90. 

For the die example, the null hypothesis is that the frequency of occurrence of each of the six faces is 
the same. With six categories, there are 5 degrees of freedom associated with the test of this hypothesis; 
the 

€ 

χCV
2  for α = .05 is 11.070. Using the data from Table 2, 

€ 

χ 2 = 10.28. Because this calculated value is 
less than the critical value, the null hypothesis is retained. The conclusion is that the differences between 
the observed and expected frequencies in each of the six categories are attributable to chance fluctuation. 

For the example with the experiment, the null hypothesis is that there is no difference between 
theoretical and experimental results. With seven data pairs there are 6 degrees of freedom associated with 
the test of this hypothesis; the 

€ 

χCV
2  for α = .05 is 12.592. Because this calculated value of 

€ 

χ 2 (0.20) is 
less than the critical value (12.592), the null hypothesis is retained. The conclusion is that the differences 
between the observed and expected values in each of the seven data pairs are attributable to chance 
fluctuation. The experimental results are therefore consistent with the theoretical results to with a 95% 
chance of probability. 

 
TABLE 5. CRITICAL

€ 

χ 2 VALUES FOR UP TO 30 DEGREES OF FREEDOM 

 
df 

 
1 
2 
3 
4 
5 

 
6 
7 
8 
9 

10 
 

11 
12 
13 
14 
15 

 
16 
17 
18 
19 
20 

 
21 
22 
23 
24 
25 

 
26 
27 
28 
29 
30 

α  = .10 
 
2.706  
4.605 
6.251 
7.779 
9.236 
 
10.645 
12.017 
13.362 
14.684 
15.987 
 
17.275 
18.549 
19.812 
21.064 
22.307 
 
23.542 
24.769 
25.989 
27.204 
28.412 
 
29.615 
30.813 
32.007 
33.196 
34.382 
 
35.563 
36.741 
37.916 
39.087 
40.256 

α  = .05 
 
3.841 
5.991 
7.815 
9.488 
11.070 
 
12.592 
14.067 
15.507 
16.919 
18.307 
 
19.675 
21.026 
22.362 
23.685 
24.996 
 
26.296 
27.587 
28.869 
30.144 
31.410 
 
32.671 
33.924 
35.172 
36.415 
37.652 
 
38.885 
40.113 
41.337 
42.557 
43.773 

α  = .01 
 
6.635 
9.210 
11.345 
13.277 
15.086 
 
16.812 
18.475 
20.090 
21.666 
23.209 
 
24.725 
26.217 
27.688 
29.141 
30.578 
 
32.000 
33.409 
34.805 
36.191 
37.566 
 
38.932 
40.289 
41.638 
42.980 
44.314 
 
45.642 
46.963 
43.278 
49.558 
50.892 

 



Graphs 
 

Common Graph Forms in Physics 
 
Working with graphs – interpreting, creating, and employing – is an essential skill in the sciences, 
and especially in physics where relationships need to be derived. As an introductory physics 
student you should be familiar with the typical forms of graphs that appear in physics. Below are a 
number of typical physical relationships exhibited graphically using standard X‐Y coordinates (e.g., 
no logarithmic, power, trigonometric, or inverse plots, etc.). Study the forms of the graphs carefully, 
and be prepared to use the program Graphical Analysis to formulate relationships between 
variables by using appropriate curve‐fitting strategies. Note that all non‐linear forms of graphs can 
be made to appear linear by “linearizing” the data. Linearization consists of such things as plotting X 
versus Y2 or X versus 1/Y or Y versus log (X), etc. Note: While a 5th order polynomial might give you 
a better fit to the data, it might not represent the simplest model. 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LINEAR RELATIONSHIP: What happens if you get a graph 
of data that looks like this? How does one relate the X 
variable to the Y variable? It’s simple, Y = A + BX where B 
is the slope of the line and A is the Y‐intercept. This is 
characteristic of Newton’s second law of motion and of 
Charles’ law:   

F = ma  
 

P
T
= const.  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INVERSE RELATIONSHIP: This might be a graph of the 
pressure and temperature for a changing volume constant 
temperature gas. How would you find this relationship 
short of using a computer package? The answer is to 
simplify the plot by manipulating the data. Plot the Y 
variable versus the inverse of the X variable. The graph 
becomes a straight line. The resulting formula will be Y = 
A/X or XY = A. This is typical of Boyle’s law: 
 

PV = const.  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INVERSE‐SQUARE RELATIONSHIP: Of the form         Y = 
A/X2. Characteristic of Newton’s law of universal 
gravitation, and the electrostatic force law:  
 

F =
Gm1m2

r2
 

 

F =
kq1q2
r 2  
 

 
In the latter two examples above there are only subtle differences in form. Many common graph 
forms in physics appear quite similar. Only be looking at the “RMSE” (root mean square error 



provided in Graphical Analysis) can one conclude whether one fit is better than another. The 
better fit is the one with the smaller RMSE. See page 2 for more examples of common graph 
forms in physics.  

 

DOUBLE‐INVERSE RELATIONSHIP: Of the form      1/Y = 1/X + 
1/A. Most readily identified by the presence of an asymptotic 
boundary (y = A) within the graph. This form is characteristic 
of the thin lens and parallel resistance formulas.  
 

€ 

1
f

=
1
di

+
1
do
     and      1

Rt
=
1
R1
+
1
R2
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POWER RELATIONSHIP: Of the form Y = AXB. Typical of the 
distance‐time relationship: 
 

d =
1
2
at2  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POLYNOMIAL OF THE SECOND DEGREE: Of the form Y = AX + 
BX2. Typical of the kinematics equation: 
 

d = vot +
1
2
at2  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EXPONENTIAL RELATIONSHIP: Of the form                Y = A * 
exp(BX). Characteristic of exponential growth or decay. Graph 
to left is exponential growth. The graph of exponential decay 
would look not unlike that of the inverse relationship. 
Characteristic of radioactive decay. 
 

€ 

N = Noe
−λt  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NATURAL LOG (LN) RELATIONSHIP: Of the form      Y = A 
ln(BX). Characteristic of entropy change during a free 
expansion: 
 

Sf − Si = nRln
V f

Vi

 

 
 

Graphing in Physics 
(Version 2) 

Comments by Carl J. Wenning 
 
Working with graphs ‐‐ interpreting, creating, and employing ‐‐ is an essential skill in the sciences, 
and especially in physics where relationships need to be derived. As a physics student you probably 
have used graphing hundreds of times and are pretty much familiar with both the interpretation 
and creation of graphs. Nonetheless, my experience in PHY 302 is that most students are unaware 
of how powerful is the use graphs to determine relationships between variables. 
 
Below are a number of typical physical relationships exhibited graphically. Study the forms of the 
graphs carefully and be prepared to help your students formulate relationships between variables. 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LINEAR RELATIONSHIP: What happens if you get a 
graph of data that looks like this? How does one relate 
the X variable to the Y variable? It’s simple, Y = A + BX 
where B is the slope of the line and A is the Y‐intercept. 
Characteristic of Newton’s second law and of Charles’ 
law:   
 

F = ma  
 

P
T
= const.  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INVERSE RELATIONSHIP: This might be a graph of the 
pressure and temperature for a changing volume 
isothermal gas. How would you find this relationship 
short of using a computer package? The answer is to 
linearize the data. Plot the Y variable versus 1 over the X 
variable. The graph becomes a straight line. The 
resulting formula will be Y = A/X or XY = A. This is 
typical of Boyle’s law: 
 

PV = const.  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INVERSE‐SQUARE RELATIONSHIP: Of the form         Y = 
A/X2. Characteristic of Newton’s law of universal 
gravitation of the electrostatic law:  
 

F =
Gm1m2

r2
 

 

F =
kq1q2
r 2

 

 

 

DOUBLE‐INVERSE RELATIONSHIP: Of the form      1/Y = 
1/X + 1/A. Most readily identified by the presence of an 
asymptotic boundary (y = A) within the graph. 
Characteristic of thin lens and parallel resistance 
formulas.  
 

€ 

1
f

=
1
di

+
1
do
     and      1

Rt
=
1
R1
+
1
R2
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POWER RELATIONSHIP: Of the form Y = AXB. Typical of 
the distance‐time relationship: 
 

d =
1
2
at2  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POLYNOMIAL OF THE SECOND DEGREE: Of the form Y = 
AX + BX2. Typical of the kinematics equation: 
 

d = vot +
1
2
at2  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EXPONENTIAL RELATIONSHIP: Of the form                Y = 
A * exp(BX). Characteristic of exponential growth or 
decay. Graph to left is exponential growth. The graph of 
exponential decay would look not unlike that of the 
inverse relationship. Characteristic of radioactive decay. 
 

€ 

N = Noe
−λt  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NATURAL LOG (LN) RELATIONSHIP: Of the form      Y = 
A ln(BX). Characteristic of entropy change during a free 
expansion: 
 

Sf − Si = nRln
V f

Vi

 

 
 

EXAMPLES OF COMMON GRAPH CONSTRUCTION ERRORS 
 
Data collection errors. If you want straight‐line data, collect only data for only two points; if reproducibility is a 
problem, conduct only one test. A straight line can always be made to fit through two points. Clearly this is a wrong way 
to collect and interpret data for, indeed, a line and, indeed, any curve can be made to pass through just two points. 
Observations should be repeated for the sake of accuracy. 
 
Confusing independent and dependent variables. The Independent variable is what I change.” The size of the 
Dependent variable Depends on the value of the independent variable. 
 
Putting wrong variables on axes. For a matter of convenience, it is common practice to put the independent variable 
on the horizontal x‐axis (bottom) rather than the vertical y‐axis (side) when seeking a relationship to define the 
dependent variable. For instance, if one wants to arrive at a relationship describing F as a function of a, then F (the 
dependent variable) should be plotted on the y‐axis. The slope becomes the proportionality constant, F = ma. 
 
Failure to understand the significance of “linearizing” data. When data are non‐linear (not in a straight line when 
graphed), it is best to “linearize” the data. This does not mean to fit the curved data points with a straight line. Rather, it 
means to modify one of the variables in some manner such that when the data are graphed using this new data set, the 
resulting data points will appear to lie in a straight line. For instance, say the data appear to be an inverse function – as x 
is doubled, y is halved. To linearize the data for such a function plot x versus 1/y. If this is indeed an inverse function, 
then the plot of x versus 1/y date will be linear. 
 
Failure to properly relate y = mx + b to the linearized data. When plotting, say, distance (on the y‐axis) versus time 
(on the x‐axis), the correct relationship between distance and time can be found by relating y to distance, x to time, m to 
the slope, and b to the y‐intercept. For instance, data have been linearized for the function resulting in a straight‐line 
graph when distance is plotted versus time‐squared. The slope is 2m/s2 and the y‐intercept is 1 m. The correct form of 
the relationship between all the variables will be distance = (2m/s2)*time2 + 1 m. 
 
Failure to apply the appropriate physical model to the data. When students have a scattering of data, they might at 
first be tempted to fit the data with a linear model, y = mx + b. Using such a linear fit will result in an error if when y 
equals 0, x must also be 0. For instance, if the force on a spring is 0, its extension from the equilibrium position will be 
zero. This is, no force, no extension. Such a relationship expressed graphically MUST pass through the origin. Because of 
errors in the collected data, a linear fit will almost never pass through the origin as it should. The way to solve this 
problem is to conduct a proportional fit, y = mx. This forces b = 0 and assures that the best fit line will pass through the 
origin.  
 
Using multiple (0,0) points to force bestfit line through origin. Some times students justifiably realize that a best‐
fit line for a straight‐line relationship should pass through the origin (e.g., if force equals zero, then acceleration must 
also equal zero). They then include multiple (0,0) points in the data set in an effort to force the best‐fit line through the 
origin. This rarely works. Better is to fit the linearized data with a proportional relationship (y = mx) in these cases 
rather than a linear relationship (y = mx + b). The value of b (the y‐intercept) is forced to be zero in the proportional fit. 
 
Failure to apply appropriate labeling. Each graph should be appropriately labeled; each axis should be similarly 
labeled with its variable and units (in parentheses). For instance, time (seconds) or distance (meters). 



 
Confusing variables with units. Don’t confuse variables (time, resistance, distance) with their units (seconds, ohms, 
meters). 
 
Connecting data points with straight lines. Never connect even linearized data point‐to‐point with straight lines. 
“Mother nature is not jerky.” Linearized data sometimes appears not to fit the best‐fit line precisely. This is frequently 
due to errors in the data. 
 
Scaling errors. In physics it is often best to show the origin (0,0) in each graph. While this is not an error, it frequently 
leads to misinterpretations of relationships. Another problem to avoid is not sticking with a consistent scale on an axis. 
Values should be equally spaced on graphs. For instance, the distances between 1, 2, 3, and 4 should be the same. To be 
avoided are situations where the spacing between such numbers is irregular or inconsistent.  
 
Beware the high order polynomial fit. Mother Nature tends to be quite simple, but any 4th or 5th order polynomial 
function can be made to fit nearly any given set of data. Avoid fitting data with non‐linear functions of above second 
order (e.g., y = a + bx + cx2). Simple functions like x = constant / y or x = A*sin(θ) are much more common. 
 
EXAMPLES OF COMMON GRAPH INTERPRETATION ERRORS 
 
Failing to note that when the slope is zero (horizontal line), there is no relationship. Some times students think 
that a relationship between two variables exists when, in fact, it does not. This often happens with auto‐scaling 
computer graphing programs where, for instance, the vertical axis runs from 0.05 to 0.06 and horizontal axis reads 
from 0 to 10. The 0.05‐0.06 range of the vertical axis is automatically stretched out to take up the same linear space as 
the horizontal axis thus “filling the page.” In this case the actual relationship might be y = 0.0001x. Some falsely think 
that this constitutes a meaningful relationship. It is an extremely weak relationship probably arising from measurement 
errors. By rescale each axis, the graph clearly shows a line of essentially zero slope. 
 
Failing to properly interpret horizontal and vertical slopes. When the slope of a line is zero degrees (horizontal), 
then there is no relationship between the plotted variables. When the slope of a line is 90 degrees (vertical), there is no 
relationship between the plotted variables. In both these cases, the so‐called “dependent” variable does not actually 
depend upon the independent variable. 
 
Failing to properly interpret a negative slope. A negative slope does NOT imply an inverse relationship. What it does 
imply is that when x gets larger, y becomes larger but in the negative direction. y = ‐mx is a negative slope. xy = m or x = 
m/y is an inverse relationship. Additionally, a negative acceleration does not necessary imply a slowing down of an 
object. An object moving in the –x direction will, in fact, be increasing in speed.  
 
Failing to properly interpret the yintercept. The value of the y‐intercept represents the value of the dependent 
variable when the independent variable is zero. Sometimes when lines or curve representing relationships clearly 
should pass through the origin (0, 0), they do not. The value of the y‐intercept is then small but not zero. This is usually 
the result of data collection errors. Linearized data can be “forced through the origin” by conducting a proportional fit of 
the data (y = mx) rather than a linear fit (y = mx + b). 
 
Finding slope using two data points NOT on bestfit line. Finding the slope of the best‐fit line from two data points 
rather than two points on the best‐fit line is a common error. This can result in a substantial error in the slope. Use two 
points on the best‐fit line for this process, not data points to find the slope of a line. 
 
Improperly finding the slope using elements of a single coordinate point. When finding the slope of a tangent line, 
students sometimes will mistakenly take the coordinate point nearest where the tangent line is drawn and from those 
coordinates attempt to determine the slope. For instance, at (x, y) = (5s, 25m) the data point values are mistakenly used 
to find a slope of 25m/5s = 5m/s. 
 
Failing to recognize trends. Graphs must be properly interpreted through the use of generalizations (e.g., double the 
mass, and the period increases by 4) 
 
Improperly interpreting the physical meaning of the slope. The units of a slope are a give away as far as 
interpreting the physical meaning of a slope is concerned. The slope is defined as the change in the y value divided by a 
corresponding change in the x value. Hence, the units are those of the y‐axis divided by those of the x‐axis. If distance 



(m) is on the y‐axis, and time (s) on the x‐axis, then the slope’s units will be m/s which is the unit for speed. Similarly, if 
velocity (m/s) is on the y‐axis and time (s) is on the x‐axis, then (m/s)/s = m/s2, the unit of acceleration. Slopes can be 
either positive or negative.  
 
Misinterpreting the area under a bestfit line or curve. To more easily determine what the area under the curve 
represents, examine the product of the units on the x‐ and y‐axes. For instance, if velocity or speed (m/s) is on the y‐axis 
and time (s) is on the x‐axis, the product of the units will be meters that is the unit of displacement or distance. Hence, 
the area under the curve of a v‐t graph is displacement. Similarly, the area under the curve of an a‐t graph is velocity. 
 
Not recognizing errors in data. When one graphs data, large errors in measurement usually stand out. They become 
noticeable when they deviate from the trend of the data. Such data points should not only be questioned, but the data 
collection process for this datum repeated to see if there is a readily explainable error. Suspect data should be struck 
through rather than erased in the written record. Update the data file appropriately.  
 
Not understanding the meaning of the bestfit line. A best‐fit line is a line which, when drawn, minimizes the sum of 
the squares of the deviations from the line usually in the y direction. It is the line that most closely approximates the 
trend of the data. 
 

Preparing Graphs: Requirements for Introductory Physics Lab Activities 
 

How NOT to Prepare a Graph 
 

 
 

1. Point protectors missing. 
2. Connecting data points with lines. 
3. Regression line shown with data point line. 
4. Multiple (0, 0) data points in attempt to “force” regression line through origin. 
5. No column labels on data or graph. 
6. No units on data or graph. 
7. No label on graph. 
8. Label does not include student’s name. 



9. Provides algebraic interpretation of data, not physical (shown here in Notes box) 
10. Regression formula missing units on constants. 

 
Other concerns: 

11. Failure to linearize data to get a straight‐line relationship unless otherwise called for. 
12. Printing graph without data table on same page. 
13. Failure to print use a landscape view. 
14. Wasting paper and printer toner. 

 
 
 



How to Prepare a Graph 
 

 
 

1. Point protectors clearly evident. 
2. Not connecting data points with lines. 
3. Regression line shown alone. 
4. No (0, 0) data points; uses proportionality for regression line. 
5. Column labels clearly evident on data and graph. 
6. Units clearly evident on data or graph. 
7. Label on graph. 
8. Label includes student’s name. 
9. Provides physical interpretation of data, not algebraic (show here in Notes section). 
10. Regression formula includes units on constants. 

 
Other pointers: 

11. Linearize data to get a straight‐line relationship unless otherwise called for. 
12. Print graph with data table on same page. 
13. Print using a landscape view, avoid using portrait view. 
14. Wasting paper and printer toner. 

 
Interpreting Slopes, Areas, and Intercepts of Graphs 

 
Sometimes slopes, areas, and intercepts in graphs have physical interpretations. At other times they 
have no real meaning at all. Consider how one can interpret meaningful terms in the following 
graph. 



 
Here we have a linear relationship between 
velocity and time. The slope of the graph can be 
found from the relationship 
 

€ 

m =
Δy
Δx

=
y2 − y1
x2 − x1

 

 
Because this is a linear relationship, arbitrarily 
choosing two pairs of (x, y) coordinates on the line 
and performing the calculation results in a slope 
of 1m/s2. The slope represents the change in 
velocity with time which is nothing other than 
acceleration. Note that the calculated slope units 
are those of acceleration.  
 
What does the area under the curve represent, 
say, from time equals 1s to time equals 5s? 

Consider adding up a series of very narrow vertical columns to find total area. The height of each 
vertical column is velocity, v, at a particular time and the width of each column is Δt. The product of 
these terms is vΔt which equals a distance. Hence the sum total of these rectangles giving the area 
under the curve during the specified time interval is the distance that the object has traveled from 
time 1s to 5s. Can you see how the distance the object travels between t = 1s and t = 5s is 32m? You 
can readily see this by adding the area of the rectangle below and to the right of the point (1, 6) 
(area = height x width = (6m/s)(4s) = 24m) to the triangle to the upper right of this point (area = 0.5 
height x base = 0.5(4m/s)(4s) = 8m). Note the 24m + 8m = 32m.  
 
The y‐intercept can also be readily interpreted in the above graph. It is merely the value of the y 
term at time = 0s. That is, the y‐intercept is 5m/s, the velocity of the object at t = 0s.  
 
Not all graphs are so readily interpreted. Some graph’s slopes, areas, and intercepts might well be 
meaningless. Consider the following examples, not all of which are meaningful. Can you tell which is 
which? 
 
What does the area under the curve of an acceleration‐versus‐time graph represent? 
 
What does the slope of an acceleration‐versus‐time graph represent? 
 
What does the y‐intercept of an acceleration‐versus‐time graph represent? 
 
What does the area under the curve of a displacement‐versus‐time graph represent? 
 
What does the slope of a displacement‐versus‐time graph represent? 
 
What does the y‐intercept of a displacement‐versus‐time graph represent? 
 
 

Physical Interpretations and Graphical Analysis 



 
Creating realistic models from data requires more than a blind “best fit” strategy. A physical model needs to be 
created from an algebraic model if the new model is to have any useful meaning. For instance, let’s say that an 
experimenter measures the circumferences of a number of circular disks, as well as the diameters of these disks. 
There will be measurement error associated with each determination of circumference and diameter. A graph of 
circumference versus diameter produces the following result with the use of Graphical Analysis:  
 

 
 
Note that an algebraic relationship results from a linear fit (y = mx + b) that is of the following form: 
 

€ 

y = 3.15x − 0.867mm  
 

Identifying y with circumference, C, and x with the diameter, D, the equation translates to the following form: 
 

€ 

C = 3.15 ×D− 0.867mm  
 
This relationship suggests that if diameter equals zero, the circumference would have some negative value. This 
clearly is incorrect in our physical world. If D = 0, then C must equal 0. The way to resolve is problem is to create a 
physical model. Clearly, the relationship is linear, but the regression line must pass through the origin (0,0).  
 
A physical model can be created by forcing the regression line to pass through the origin. This is NOT done by 
including the data point 0,0; it IS done by using a different regression model, a proportionality (y = Ax), for the 
curve fit. Such a curve fit produces a different equation that we would call a physical model. 
 

€ 

C = 3.14D 
 
or more commonly 
 

€ 

C = πD = 2πr  
 

where r is the radius of the circle. This physical model is not weighed down by the non-zero y intercept. When 
interpreting graphical results in lab, be certain to use an interpretation that corresponds to the physical world as we 
know it.  
 



Report Writing 
 

Hypothetico-deductive approaches to scientific experimentation 
 

Scientific Values 
 
Scientists and engineers generally adhere to an informal set of values that serve as the basis of ethical conduct in 
the disciplines. Budding scientists and engineers are also expected to adhere to these rules of conduct. Unless these 
rules of conduct are expressly stated, students in an introductory lab course might never know them. What follows 
are one science educator author’s interpretation of expected personal behaviors.  
 
Cooperative attributes (and how students can demonstrate them in lab): 

• Be well informed – Come to lab well prepared. This means not only to complete the required PreLab, but to 
have reviewed carefully the purpose of the indicated lab and given some thought to the required inquiry 
practices to be utilized in achieving stated goals. Read pertinent sections of the Student Laboratory 
Handbook. 

• Stay focused – When in the laboratory setting, the emphasis should be on the first part of the word 
laboratory (labor) and not on the second (oratory). Work diligently on the task at hand, and see it through to 
completion with dispatch. Everyone should contribute to the best of his or her ability. 

• Evaluate alternatives – Listen to others in your group; perhaps someone with an alternative approach 
might, in fact, be pointing out the best approach. Consider all arguments carefully before making a 
decision. 

• Take supportable positions – Positions in lab should be based on evidence and critical thinking. If you hold 
a position contrary to that of you colleagues, justify it. 

• Being sensitive to others’ positions – Not everyone will agree in lab. If you disagree with another person in 
your group, then find a solution using reason and evidence. Criticize the idea, not the person. 

• Seek precision – Don’t be satisfied with “good enough.” Try your best to minimize experimental error and 
improve your results. Strive for accuracy in word and action. 

• Proceed in a logical and orderly manner – For many of you, this will be the first time you have been asked 
to design and conduct experiments. Think the process through carefully before collecting data. 

 
Individual attributes (and how students can demonstrate them in lab): 

• Be well informed – Come to lab prepared with an understanding of what it is you intend to accomplish and 
ideas for how you will accomplish it. This generally means completing the PreLab work, and reading 
through the lab guidelines in their entirety while attempting to understand. Also, don’t forget to read the 
articles in the Student Laboratory Handbook; it has many good articles dealing with practical lab matters. 

• Stay focused – While working in lab, it is important to stay focused on the task at hand. Avoid wayward 
discussions. The focus in laboratory should be on labor and not on oratory. 

• Be willing to evaluate alternatives – While you will arrive in lab with your own ideas about how a task 
should be accomplished, carefully weigh ideas and comments by your lab partner(s) dealing with 
alternative approaches before coming to a firm decision. 

• Maintain only supportable positions – You should always be sensitive to the positions of other. If, 
however, there is a justifiable reason for taking one approach over another, then stand your ground. 
Supportable positions are tenable. Ask for outside commentary from your lab instructor if you have reached 
an intractable disagreement about how to proceed. 

• Seek precision – Always strive to be as accurate as would reasonably be expected of a scientist. There is no 
excuse for sloppy lab work. It would never be accepted by the scientific community in professional 
research, and won’t be accepted in the introductory lab setting as well. 

• Proceed in a logical and orderly manner – Plan your work before executing it. Failure to do so is like using 
a calculator to “solve a problem.” Calculators don’t solve problems; people do. The calculator literally 
calculates a solution, and can only do so after a human has reasoned out the approach to a solution. Merely 
using scientific hardware and software won’t solve problems; nothing can replace good intellectual 
thought. 



• Be sensitive to others– When working with your colleague(s), be considerate of his or her needs and 
concerns. Show proper respect; listen to others; think before you act. 

• Think critically – There are many definitions of critical thinking, and any of the following would apply: 
“reasonable reflective thinking that is focused on deciding what to do and what to believe” OR 
“interpreting, analyzing or evaluating information, arguments or experiences with a set of reflective 
attitudes, skills, and abilities to guide our thoughts, beliefs and actions” OR “examining the thinking of 
others to improve our own.” Strive to apply critical thinking to your tasks. 

• Be intellectually honest – Evaluate all pertinent evidence carefully and systematically. Avoid prejudicial 
decision-making. 

• Avoid unwarranted closure – Avoid leaping to conclusions if data don’t support a particular position.  
• Demonstrate personal integrity – Never “fudge” data to make it fit the expected outcomes. Never eliminate 

data unless there is a clear and defensible reason. 
 


